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Abstract

NONSEPARABLE soLu .

This paper shows that microwave cavities and waveguides synthesized with nonseparable

solutions of Helmholtz wave equations have interesting properties concerning field energy and

Power. Moreover they have better attenuation and Q factor in comparison with the conventio-

nal waveguides and cavities.

Introduction

Recently we studied waveguides and cavi-

ties by the use of the nonseparable solution

of Helmholtz wave equation. In this paper

we consider the field energy and power of

these microwave components.

Analysis

There has been shown [1] that nonsepa-

rable solutions of Helmholtz wave equation

can be used in the synthesis of waveguides

and cavities.

Departing from the TM,, solution in a

rectangular waveguide and a second order com-

bination of wave functions we can write the

following solution to the. Helmholtz wave

equation:

o (Xy) = 0° (Xy) + c g~(xy)

where 0° (xy), and 04 (xy) are respectively

a separable and nonseparable solution and C

a perturbation factor.

Depending on the value of C and the di-

mensions a and b of the rectangular wave-

guide, various cross-sections can be found

different from the original, as seen in fig.

1.
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Consider a rectangular waveguide with

dimensions a =Vand b.

@ (xy) is then the longitudinal electric

field Ez given by:

Ez = sin x sin ~Y + C f(x,y, ~,b) (1)

with f(x,y,7f,b) the nonseparable solution of

the second order given by:

(gx)z+yz sin x sin~y + ~y sin x Cos :y

-K
+ x cosxsin~y +2x

F Cos x Cos ~Y

Let’s consider the field energy and power.

The power in the axial direction of the wave-

guide is given by:

02 yPz=;—
Jk’c e A ‘z E$d A

(2)

where A is the cross-section of the waveguide

and Ye,fi respectively the wave admittance

and propagation factor.

Substitution of (1) in (2) leads to:

2
Pz=; ~Ye

~[
sin

2
x sin2 ~y

kc A

+ 2 C f(x,y,~,b)

+ C2f2(x,y,m,b)jdA (3)



,-
In order to compare waveguides with per-

turbed cross-section with those with rectan-

gular cross-section, we define the relative

power:

where P is
z

section and

one. After

2 shows the

Pz
P

rel = ~
(4)

‘z

the power of the perturbed cross-

P~ the power of the rectangular

reduction to the same surface fig.

relative power flow Prel versus

the perturbation factor C with the-dimensions

a/b as a parameter. At this stage we can

conclude that, with respect to energy trans-

port, a waveguide synthesised with nonsepara-

ble solutions can support more power depen -

ding on the value C and secondly rectangular

waveguides need no accurately finished cor -

ners. Indeed, some rounded corners give a

better energy transport. Investigation of

the max. amplitude of the electric field E

IEZI max normalized to the max. amplitude of

the field in the rectangular cross-section

for constant relative power shown in fig, 3,

gives the following features: For constant

power, values of C>0,014 result in an in -

creasing value oflEz\max.

However high value of C result in signi-

ficant distortion of the original rectangu-

lar cross-section and obviously in a more

difficult construction problem ~

A very good compromise can

C between 0,014<C<0,04.

Which results in l,04<lE~max<

f the cavity.

be found for

,36.

Other important properties are the at-

tenuating and the Q factor. Considering the

ohmic losses of the walls to be small, per-

turbation theory can be used. In that case

the power flow in the z direction is given

by:

P(z) = P. e-zdz (5)

where d is the attenuation constant.

A straightforward calculation leads us

to the following expression for (TM modes)

where C :

A:

c
v

t
~ Rm

m /&.
.

r

5
(6)

,Jc”c
~2

the circumference of the cross-

section

the area of the cross-section

the surface resistance

a dimensionless number given by the

relation:

The relative at

4
rel

tenuation

3C/2A c
.

c’/2A’
6.

d

compares the attenuation in

(8)

a perturbed cross-

section with non perturbed one.

Fig.4 shows G(rel as a decreasing function

of the perturbation factor,.

5
This is mainly due to the factor c.

For cylindrical cavities with perturbed cross-

section the Q factor is given by:

(9)

with d : the length of the cavity

AC: the permeability of the metal walls

AC : skindepth

In the same manner a relative Q can be de -

fined yielding:

1+ 3=Cd/4A

‘rel = 1 +5; Cd/4A’ (lo)

In fig.S it can be seen that Qrel increases

with perturbation.

In conclusion we can say that waveguides

and cavities synthesized with nonseparable

solutions of the Helmholtz wave equation have

better attenuation factor and Q factor in com-

parison with the conventional rectangular and

circular waveguide shapes. Further they have

undoubtly interesting properties for micro -

wave measurement and power applications.
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Alle calculations were done on the I.B.M

system 360 of the Rekencentrum of the K.U.L.
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Waveguide cross sections for various values

of c.
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Relative attenuation factor versus the per-

turbation factor C.
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bation factor C with a/b as a parameter, and
factor C.

for normalized areas of cross sections and
normalized amplitudes.
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E z max versus C with a/b as a parameter.
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