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Abstract

This paper shows that microwave cavities and waveguides synthesized with nonseparable

solutions of Helmholtz wave equations have interesting properties concerning field energy and

Power.
nal waveguides and cavities.

Introduction

Recently we studied waveguides and cavi-
ties by the use of the nonseparable solution
of Helmholtz wave equation. 1In this paper
we consider the field energy and power of

these microwave components.

Analysis

There has been shown [1] that nonsepa-
rable solutions of Helmholtz wave equation
can be used in the synthesis of waveguides
and cavities.

Departing from the TM11 solution in a
rectangular waveguide and a second order com-~
bination of wave functions we can write the
following solution to the Helmholtz wave
equation:

B (xy) = 8° (xy) + C 8% (xy)

where 9° (xy), and g2 {xy) are respectively
a separable and nonseparable solution and C
a perturbation factor,

Depending on the value of C and the di-
mensions a and b of the rectangular wave-
guide, various cross-sections can be found
different from the original, as seen in fig.
1.
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Moreover they have better attenuation and Q factor in comparison with the conventio-

Consider a rectangular waveguide with
dimensions a =7and b.
@ (xy) is then the longitudinal electric
field E, given by:

E =

2 sin x sin g.y + C f(x,y, ,b)

M

with f(x,y,f,b) the nonseparable solution of
the second order given by:

e

(%rx)2+y2 sin x sing y + g y sin x cos gfy

+ X cosXxsin % y + 2 x %?cos X cos gﬁy

Let's consider the field energy and power.
The power in the axial direction of the wave-
guide is given by:

2
1 A X
P,=7 =5 Y, ,// E, E, dA

(2)
z
k c A

where A is the cross-section of the waveguide
and Ye,/Z respectively the wave admittance
and propagation factor,

Substitution of (1) in (2) leads to:
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z
+ 2 C f(x,y,”,b)

+ c2elx,y,mby Jaa (3)



In order to compare waveguides with per-
turbed cross-section with those with rectan-
gular cross-section, we define the relative
power: P

4 = (%)

where Pz is the power of the perturbed cross-
section and P; the power of the rectangular
one. After reduction to the same surface fig.

2 shows the relative power flow P versus

the perturbation factor C with thgeéimensions
a/b as a parameter. At this stage we can
conclude that, with respect to energy trans-
port, a waveguide synthesised with nonsepara-
ble solutions can support more power depen -
ding on the value C and secondly rectangular
waveguides need no accurately finished cor -
ners. Indeed, some rounded corners give a
better energy transport. Investigation of
the max. amplitude of the electric field E
lEzlmax normalized to the max. amplitude of
the field in the rectangular cross-section
for constant relative power shown in fig. 3,
gives the following features: For constant
power, values of C) 0,014 result in an in -
creasing value °f|Ez‘max'

However high value of C result in signi-
ficant distortion of the original rectangu-
lar cross-section and obviously in a more

difficult comstruction problem of the cavity.

A very good compromise can be found for
C between 0,014<C<0,04.
Which results in 1,04<]Ezl max<1,36.

Other important properties are the at-
tenuation and the Q factor. Considering the
ohmic losses of the walls to be small, per-
turbation theory can be used. In that case

the power flow in the z direction is given

by:
P(z) = P e~z (5)

where & is the attenuation constant.

A straightforward calculation leads us
to the following expression for (TM modes)
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\li%‘ '9(: (6)

the circumference of the cross-

where C
section
A : the area of the cross-section
Rm: the surface resistance
sc: a dimensionless number given by the

relation:

2
E
1 C 2
/c - H] d1=§c£o"%x/lﬁz( da (7)
We A

The relative attenuation

o _C/2A §C

(8
rel C'/zAlsc )

compares the attenuation in a perturbed cross-
section with non perturbed one.

Fig.4 shows drel as a decreasing function

of the perturbation factor.

This is mainly due to the factor Ek.

For cylindrical cavities with perturbed cross-
section the Q factor is given by:

Q=£__d_.__1_c_a (9)
A §c 2 (1+ji IK)

with d the length of the cavity
Jﬁ:: the permeability of the metal walls
éc : skindepth
In the same manner a relative Q can be de -
fined yielding:

1 +§C Cd/4A
Q =
rel +§ cd/aa

(10)

In fig.5 it can be seen that Qrel increases
with perturbation.

In conslusion we can say that waveguides
and cavities synthesized with nonseparable
solutions of the Helmholtz wave equation have
better attenuation factor and Q factor in com-
parison with the conventional rectangular and
circular waveguide shapes. Further they have
undoubtly interesting properties for micro -

wave measurement and power applications.
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